Assignment 8

Coverage: 16.2, 16.3 in Text.
Exercises: 16.2 no $29,32,37,41,42,43.16 .3$ no $2,5,9,11,15,16,18,20,27,29,32$.
Hand in 16.2 no 32,$42 ; 16.3$ no 11, 20, 32 by March 28.

Supplementary Problems

1. Let $F=\left(F_{1}, \cdots, F_{n}\right)$ be a smooth vector field in an open region in \mathbb{R}^{n}. Show that if it is conservative, then the necessary conditions (Component Test) hold

$$
\frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial F_{j}}{\partial x_{i}}, \quad \forall i, j
$$

2. Let \mathbf{F} be a smooth vector field in the entire space \mathbb{R}^{n}. Show that

$$
\Phi(x, y, z)=\int_{0}^{1} \mathbf{F}(t x, t y, t z) \cdot(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) d t
$$

defines a potential function for \mathbf{F} provided it passes the component test.
3. Let C be the oriented curve runs from the origin to $(2,0)$ along the cardioid $r=1+\cos \theta$ in the upper half plane. Find the work done of $\mathbf{F}=(\sin x y+x y \cos x y) \mathbf{i}+x^{2} \cos x y \mathbf{j}$ along C.

